skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Canfield, Pete"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automation of the process of developing biophysical conductance-based neuronal models involves the selection of numerous interacting parameters, making the overall process computationally intensive, complex, and often intractable. A recently reported insight about the possible grouping of currents into distinct biophysical modules associated with specific neurocomputational properties also simplifies the process of automated selection of parameters. The present paper adds a new current module to the previous report to design spike frequency adaptation and bursting characteristics, based on user specifications. We then show how our proposed grouping of currents into modules facilitates the development of a pipeline that automates the biophysical modeling of single neurons that exhibit multiple neurocomputational properties. The software will be made available for public download via our site cyneuro.org. 
    more » « less